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Abstract
We study a particle propagation on a circle in the presence of a point interaction.
We show that the one-particle Feynman kernel can be written as the sum of
reflected and transmitted trajectories which are weighted by the elements of the
nth power of the scattering matrix evaluated on a line with a point interaction.
As a by-product, we find a three-parameter family of trace formulae as a
generalization of the Poisson summation formula.

PACS numbers: 03.65.Db, 03.65.Ge, 03.65.Nk

1. Introduction

A quantum system restricted on a bounded domain has become more relevant for theoretical
physics. There, the role of boundary conditions is very important not only for the long distance
(infrared) regime but also for the short distance (ultraviolet) regime. As is well known,
due to the presence of boundaries, a nontrivial problem arises with specifying domains of
self-adjointness for observables, typically for the Hamiltonian. Note that the Hamiltonian
operator, which is usually given by a (partial) differential operator, still remains formal
without specifying its self-adjoint domains corresponding to the different boundary conditions.
Mathematically, the correct framework for treating the boundary conditions in quantum theory
is by means of the analysis of von Neumann’s self-adjoint extension of the symmetric operator
[1]. (Also see [2] for the dissipative extensions of an abstract symmetric operator with equal
deficiency indices.) Physically speaking, the variety of boundary conditions provided by
the self-adjoint extension of the formal Hamiltonian implies the very rich structure of point
interactions available in quantum theory.

Although in the operator formalism point interactions have been extensively discussed
in the literature, the path-integral description of point interactions has not yet been fully
understood. Mathematically speaking, this is mainly due to the lack of trace formulae suitable
for the point interactions. Physically speaking, on the other hand, this is mainly due to the
lack of our knowledge about the classical trajectories for a particle in the presence of point
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interactions. The aim of this paper is to fulfill a gap of the description for boundary conditions
between the operator formalism and the path-integral formalism; we would like to propose a
physically transparent prescription on how to incorporate the boundary conditions obtained
in the operator formalism into the path-integral description. To illustrate our idea in a simple
setting, in this paper we will consider one-particle quantum mechanics on a circle in the
presence of a single point interaction.

To begin with, let us first consider a quantum particle on a circle of circumference L in
the presence of a δ′-interaction described by the formal Hamiltonian H = −d2/dx2 + 2cδ′(x),
where c ∈ R is the dimensionless coupling constant and the prime (′) indicates the derivative
with respect to x. (Here, as in the following, we use units where h̄ = 2m = 1.) It is
known that the δ′-interaction belongs to the so-called scale-independent subfamily of point
interactions [3] and is verified by the boundary conditions ψ(L) = [(1 − c)/(1 + c)]ψ(0)

and ψ ′(L) = [(1 + c)/(1 − c)]ψ ′(0) [4, 5], where ψ is the square integrable wavefunction
on an interval (0, L). Although the Feynman kernel of this system has been analyzed in the
literature [6, 7], the physical interpretation for the weight factors (see below) remains open.
We would first like to address this issue.

As ubiquitous in the scale-independent point interactions, in this δ′-interaction case the
wave numbers are quantized in an integer step so that it is easy to rewrite the Feynman
kernel K(x, T ; x0, 0) = 〈x|e−iHT |x0〉 evaluated in the operator formalism as the path-integral
representation with the help of the Poisson summation formula. The resultant kernel takes the
form

K(x, T ; x0, 0) = 1√
4π iT

∑
n∈Z

{
cos(nθ) ei T

4 (
nL+x−x0

T
)2 ∓ sin(nθ) ei T

4 (
(n+1)L−x−x0

T
)2}

, (1)

where 0 � θ := Arccos[(1 − c2)/(1 + c2)] < π and − (+) sign for c > 0 (c < 0). Arccos
is the principal value of the inverse cosine. Note that the presence of a point interaction
breaks the global translational invariance. As a consequence, the kernel (1) is the sum of
partial amplitudes for the translational invariant and variant classes of trajectories, which are
weighted by the factors cos(nθ) and sin(nθ) respectively.

Before discussing the physical meaning of the weight factors, we have to reveal the
particle propagations described by (1). To this end, it should first be noted that c = 0 leads
to θ = 0 so that equation (1) becomes the well-known form of the one-particle Feynman
kernel on a circle with periodic boundary conditions. As discussed in many textbooks (see for
example [8, 9]), in this c = 0 case the kernel (1) is the sum of partial amplitudes for transitions
via classical paths distinguished by the homotopy class of S1, i.e. the winding number. For
nonzero c, however, the classical trajectories of a particle are not so trivial due to the presence
of δ′-potential, which acts as a point scatterer. When a particle reaches the position of the
point scatterer, there must be in general two possibilities: reflection or transmission. Thus,
the paths for a particle interacting n-times with the point interaction must consist of 2n distinct
paths. As an example, the classical worldlines for n = 2 and −2 in (1) are depicted in figure 1.
As we will see below, half of these 2n paths belong to the translational invariant class and the
other half to the translational variant class.

Now it is time to discuss the physical meaning of the weight factors. It is intuitively
clear that the reflected trajectory should be weighted with a reflection coefficient R+ (R−) for
every time when a particle is reflected by the point scatterer from left to left (right to right),
where R+ (R−) is the reflection coefficient for a particle propagating the negative half-line
R− (positive half-line R+). Similarly, a transmitted trajectory should be weighted with a
transmission coefficient T+ (T−) for every time when a particle is transmitted by the point
scatterer from left to right (right to left), where T+ (T−) is the transmission coefficient for
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(a) T+T+ (b) R−R+ (c) R+T+ (d) T−R+

(e) T T (f) R+R (g) R T (h) T+R

Figure 1. Classical worldlines for a particle scattered twice by the point interaction. Time flows
along the vertical direction. The dashed line represents the worldline for the point interaction. In
the case of δ′-interaction with c > 0, these 2 × 22 = 8 trajectories are weighted by the factors
T±T± = cos2 θ, R∓R± = −sin2 θ, R±T± = ∓ sin θ cos θ and T∓R± = ∓ cos θ sin θ .

a particle propagating from R− to R+ and vice versa. The physical meaning of the weight
factors is now obvious: these must be elements of the nth power of the one-particle scattering
matrix S(1), which we would like to call the n-times scattering matrix S(n), evaluated on a line
with a point interaction at the origin (see section 3). In the case of δ′-interaction, it is easy to
compute the one-particle scattering matrix. The result is

S(1) =
(

T+ R−
R+ T−

)
=

⎧⎪⎪⎨
⎪⎪⎩

(
cos θ sin θ

−sin θ cos θ

)
, for c > 0,(

cos θ −sin θ

sin θ cos θ

)
, for c < 0,

(2)

which is just the rotational matrix. Thus, the n-times scattering matrix is given by just replacing
the argument θ in (2) with nθ . These matrix elements are nothing but the weight factors in
(1). In this sense, the identity cos2(nθ) + sin2(nθ) = 1 is a consequence of the unitarity of the
scattering matrix and can be viewed as the partial amplitude unitarity.

So far, we have studied only the case of δ′-interaction; it seems that the above discussion
is valid for any one-particle quantum mechanics on a circle with a single point interaction. As
we will show in the rest of this paper, this observation is indeed true. Now it is time to give
an explicit statement for the purpose of this paper. The main goal of this paper is to show the
following statement: the Feynman kernel for a spinless particle moving freely on a circle of
circumference L with a single point interaction at the origin can be written in the following
generic form:

K(x, T ; x0, 0) =
∫ ∞

−∞

dp

2π
eiT [p(

x−x0
T

)−p2]

+
∞∑

n=1

∫ ∞

−∞

dp

2π

{
S(n)

++ (p) eiT [p(
nL+x−x0

T
)−p2] + S

(n)
−+(p) eiT [p(

(n+1)L−x−x0
T

)−p2]
}

+
∞∑

n=1

∫ ∞

−∞

dp

2π

{
S

(n)
−−(p) eiT [−p(

−nL+x−x0
T

)−p2] + S
(n)
+−(p) eiT [−p(

(−n+1)L−x−x0
T

)−p2]
}

+ (bound state contribution), (3)

where S
(n)
±± and S

(n)
±∓ are the elements of the n-times scattering matrix.
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This statement is based on the following observations.

(i) The classical trajectories xcl(t) for a particle propagating from (x0, 0) to (x, T ) scattered
n-times by the point interaction are exhausted by xcl(t) = x0 + vclt , where vcl =
(±nL+x −x0)/T for a translational invariant class and vcl = ((±n+1)L−x −x0)/T for
a translational variant class of classical trajectories, where the ‘+’ sign is for the trajectory
of the right-moving outgoing particle and the ‘−’ sign is for that of the left-moving
outgoing particle.

(ii) Any paths for a particle traveling from (x0, 0) to (x, T ) with momentum p are
categorized into four cases, that is, the propagation from left to right, from left
to left, from right to left and from right to right. The corresponding plane
waves are eip(nL+x−x0), eip((n+1)L−x−x0), e−ip(−nL+x−x0) and e−ip((−n+1)L−x−x0), respectively.
These four classes of classical trajectories should be weighted by the factors
S

(n)
++ (p), S

(n)
−+(p), S

(n)
−−(p) and S

(n)
+−(p), which are the elements of the n-times scattering

matrix S(n)(p) on the basis of right- and left-moving momentum modes (see section 3).
(iii) The bound-state contribution, even if it exists, does not affect the scattering process on a

line such that it can be added at the end of computation.

The purpose of this paper is to show the validity of (3) for point interactions allowed in
quantum mechanics, which can be classified, as mentioned before, by means of the analysis of
the self-adjoint extension of the formal Hamiltonian operator. In physical language, the self-
adjoint extension of the formal Hamiltonian is translated into the requirement for the global
conservation of the probability current density j (0) = j (L), where j = −i((ψ∗)′ψ − ψ∗ψ ′)
with ψ being the wavefunction on the Hilbert space consisting of square integrable functions
on the interval (0, L). The quantum mechanical system for a free particle on a circle is known
to admit a U(2) family of distinct point interactions characterized by the boundary conditions
[6, 7]

(U − 1l) 
�(0+) + iL0(U + 1l) 
� ′(0+) = 
0, (4)

where


�(x) :=
(

ψ(x)

ψ(L − x)

)
, 
� ′(x) =

(
ψ ′(x)

−ψ ′(L − x)

)
, 0 < x < L. (5)

U is a 2 × 2 unitary matrix and L0 is an arbitrary real constant length scale, which is just
introduced to adjust the length dimension of the equation. For the following discussions, it
is convenient to parameterize the matrix U ∈ U(2) as the following spectral decomposition
form:

U = eiα+P+ + eiα−P−, (6)

P± = 1l ± 
e · 
σ
2

, (7)

where 
σ = (σ1, σ2, σ3) is a vector of the Pauli matrices, eiα± (0 � α± < 2π ) are the two
eigenvalues of the unitary matrix U and P± is the corresponding projection operator fulfilling
P+ + P− = 1l, (P±)2 = P± and P±P∓ = 0. 
e = (ex, ey, ez) is a real unit vector satisfying
the condition e2

x + e2
y + e2

z = 1. In this paper, we derive analytical forms of the one-particle
Feynman kernel with these parameters.

It is worthwhile to point out here that if we multiply the projection operators P± with (4)
on the left, the boundary conditions boil down to the following two independent equations:

P±[ 
�(0+) + L± 
� ′(0+)] = 
0, (8)
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where

L± := L0 cot(α±/2). (9)

It should be noted that (8) is not well defined when α± = 0. We will, however, use (8) instead
of (4) as the boundary conditions by taking a careful limit for the case of α± = 0.

The rest of this paper is organized as follows. In section 2, we derive the general forms
of the reflection and transmission coefficients for a particle on a whole line in the presence
of a point interaction at the origin. In section 3, we define the one-particle scattering matrix
on R\{0} and then introduce the n-times scattering matrix. Section 4 is devoted to detailed
analysis of the spectral property for the free Hamiltonian (i.e. Laplace operator) on S1\{0}.
As a by-product, we find a three-parameter family of trace formulae which provide a direct
connection between the quantum energy spectrum and classical length spectrum of S1 with a
point singularity. These can be regarded as generalizations of the Poisson summation formula.
In section 5 we give a proof of (3). We conclude in section 6.

2. Reflection and transmission coefficients on R\{0}
In this section we will calculate the matrix elements of the scattering matrix, that is, the
reflection and transmission coefficients for a continuum state once scattered by the point
interaction at the origin on a whole line.

The reflection and transmission coefficients for right- and left-moving incidental waves
with momentum k > 0 are given by

ψk,+(x) =
{

eikx + R+(k) e−ikx, for x < 0,

T+(k) eikx, for x > 0,
(10a)

and

ψk,−(x) =
{
T−(k) e−ikx, for x < 0,

e−ikx + R−(k) eikx, for x > 0.
(10b)

Point interactions consistent with the probability conservation j (0+) = j (0−) are characterized
by the same boundary conditions as (8) but with the two-component vectors


�(x) =
(

ψ(x)

ψ(−x)

)
, 
� ′(x) =

(
ψ ′(x)

−ψ ′(−x)

)
, 0 < x < ∞. (11)

Plugging (10a) and (10b) into the boundary conditions (8) with (11), we get the matrix
equations

P±Z(k) = eiδ±(k)P±, (12)

where

Z(k) :=
(

R−(k) T+(k)

T−(k) R+(k)

)
, (13)

and

0 � δ±(k) := 2Arccot(kL±) = 1

i
Log

(
ikL± − 1

ikL± + 1

)
< 2π. (14)

Arccot and Log are the principal values of the inverse cotangent and logarithm, respectively.
Now it is easy to find the reflection and transmission coefficients. Equation (12) implies that
the matrix Z(k) is unitary and has the spectral decomposition Z(k) = eiδ+(k)P+ + eiδ−(k)P−.
Thus,

Z(k) = eiδ+(k) + eiδ−(k)

2
1l +

eiδ+(k) − eiδ−(k)

2

e · 
σ , (15)

5
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from which we find

R±(k) = eiδ+(k) + eiδ−(k)

2
∓ eiδ+(k) − eiδ−(k)

2
ez, (16a)

T±(k) = eiδ+(k) − eiδ−(k)

2
(ex ∓ iey). (16b)

These results are consistent with those obtained in [10, 11] with suitable redefinitions of the
parameters.

Several remarks are now in order.

(i) The two eigenvalues of Z(k) satisfy the relations eiδ±(−k) = e−iδ±(k), from which we define

δ±(−k) =
{

2π − δ±(k) for α± �= 0,

−δ±(k) for α± = 0.
(17)

Note that this definition ensures the continuity of δ±(k) (−∞ < k < ∞) at k = 0.
(ii) The phase shifts δ±(k) satisfy the following functional identities:

δ′
±(k) = − sin δ±(k)

k
, (18)

where the prime (′) indicates the derivative with respect to k. These identities will be
important for the proof of (3).

(iii) The reflection and transmission coefficients satisfy

[R±(k)]∗ = R±(−k), [T±(k)]∗ = T∓(−k), (19)

where ∗ indicates the complex conjugation.
(iv) In terms of the reflection and transmission coefficients, the unitarity conditions of the

matrix Z(k) read as

T∓(−k)T±(k) + R±(−k)R±(k) = 1, (20a)

T∓(−k)R∓(k) + R±(−k)T∓(k) = 0. (20b)

3. Scattering matrix on R\{0}
In this section we will first introduce the one-particle scattering matrix (S-matrix) and then
define the n-times scattering matrix, whose elements give the weight factors of the Feynman
kernel for the contributions scattered n-times by the point interaction.

Let us first define the one-particle S-matrix S(1) on a whole line in the presence of a
single point interaction at the origin. On the basis of right- and left-moving momentum modes
{| + k〉, |−k〉|k > 0}, where 〈x| ± k〉 = e±ikx , the one-particle S-matrix is defined as follows:

S(1)(k) =
(

S
(1)
++ (k) S

(1)
+−(k)

S
(1)
−+(k) S

(1)
−−(k)

)
:=

(
T+(k) R−(k)

R+(k) T−(k)

)
, (21)

whose matrix elements are graphically represented in figure 2. Noting that the S-matrix
can be written as S(1)(k) = Z(k)σ1 and Z(k) is unitary, we see that S(1)(k) clearly satisfies
the unitarity conditions [S(1)(k)]†S(1)(k) = 1l = S(1)(k)[S(1)(k)]†, which are nothing but a
consequence of the probability conservation j (0+) = j (0−). For the following discussions, it

6
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S
(1)
++(k) =

k k

= S
(1)
+−(k)

S
(1)
−+(k) =

k k

= S
(1)
−−(k)

Figure 2. One-particle scattering from a point interaction (point scatterer). Time flows along the
vertical direction. The dashed line represents the worldline for the point scatterer. The arrows
represent the direction of momentum flow.

is convenient to rewrite the S-matrix into the spectral decomposition form:

S(1)(k) = s+(k)P+(k) + s−(k)P−(k), (22)

where s±(k) are the two eigenvalues of S(1)(k) given by

s±(k) = ei(	+(k)+π/2)
[
ex sin 	−(k) ± i

√
1 − e2

x sin2 	−(k)
]
, (23a)

	±(k) := δ+(k) ± δ−(k)

2
, (23b)

and P±(k) are the corresponding projection operators constructed as follows:

P±(k) = S(1)(k) − s∓(k)1l

s±(k) − s∓(k)
= 1l ± 
ε(k) · 
σ

2
, (24)

where 
ε(k) = t (εx(k), εy(k), εz(k)) is a real unit vector defined as


ε(k) := 1√
1 − e2

x sin2 	−(k)

⎛
⎝ −cos 	−(k)

ez sin 	−(k)

−ey sin 	−(k)

⎞
⎠ . (25)

Note that these projection operatorsP±(k) satisfy the relationsP+(k)+P−(k) = 1l, [P±(k)]2 =
P±(k) and P±(k)P∓(k) = 0 and that s±(k) satisfy the relations

s±(−k) =
{

1/s±(k) for α± �= 0 or α± = 0,

1/s∓(k) for α+ = 0, α− �= 0 or α+ �= 0, α− = 0.
(26)

Next, introduce the n-times scattering matrix S(n) as the nth power of S(1):

S(n)(k) =
(

S
(n)
++ (k) S

(n)
+−(k)

S
(n)
−+(k) S

(n)
−−(k)

)
:= [S(1)(k)]n. (27)

By construction, it is obvious that the n-times scattering matrix S(n)(k) satisfies the unitarity
conditions [S(n)(k)]†S(n)(k) = 1l = S(n)(k)[S(n)(k)]†, which lead the partial amplitude unitarity
of the Feynman kernel. Thanks to the spectral decomposition (22), the n-times scattering

7
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matrix is easily computed with the result

S(n)(k) = [s+(k)]nP+(k) + [s−(k)]nP−(k). (28)

Although in the following discussions we do not need the explicit expression for S(n), it may
be instructive to write down its matrix elements. A straightforward calculation yields

S
(n)
±± = ein(	++π/2)[Tn(ex sin 	−) ∓ iey sin 	− · Un−1(ex sin 	−)], (29a)

S
(n)
∓± = ein(	++π/2)[∓ez sin 	− − i cos 	−]Un−1(ex sin 	−), (29b)

where Tn and Un are the Chebyshev polynomials of the first and second kinds, respectively,
and satisfy the following relations:

Tn(cos θ) = cos(nθ), Un(cos θ) = sin((n + 1)θ)

sin θ
, n = 0, 1, 2, . . . . (30)

4. Spectrum of S1\{0}
Let us next study the spectrum of the quantum system for a particle on a circle in the presence
of a point interaction described by the boundary conditions (4). Although the spectral property
of the system has been already studied in the literature [6, 7], these results are not suitable
for the purpose of this paper. In this section, we will uncover an amazing relation between
the scattering theory on R\{0} discussed in the previous section and positive energy spectrum
of S1\{0}. We also derive the trace formulae for the free Hamiltonian (Laplace operator) on
S1\{0}.

The general solution to the Schrödinger equation −d2ψ/dx2 = Eψ on S1\{0} for positive
energy E = k2 > 0 is given by

ψk(x) = A(k) eikx + B(k) eik(L−x), k > 0, (31)

where the phase factor eikL in the second term is introduced for later convenience. Note that
the two coefficients A(k) and B(k) may depend on k. The general solution for negative energy
E = −κ2 < 0 will be obtained by just replacing k with iκ in (31). We have to be, however,
careful about zero energy solutions with E = 0, which are not necessarily obtained by the
naive limit k → 0 in (31): the general solution for E = 0 is a first degree polynomial and
takes the form

ψ0(x) = A0 + B0x. (32)

In this paper, we call the above solution with B0 �= 0, as well as negative energy solutions,
bound states. It turns out that any knowledge about these bound states is not necessary for
the following discussions. Note that a zero energy solution with the limit k → 0 in (31) is
ambiguous because the two terms in (31) are not independent of each other when k = 0. This
issue will be discussed later.

Substituting (31) into (8), we get the two independent conditions

P±(e−ikL1l − eiδ±(k)σ1)

(
A(k)

B(k)

)
= 
0. (33)

Since these two equations are orthogonal to each other, they can be combined into the following
form:

S(1)(k)

(
A(k)

B(k)

)
= e−ikL

(
A(k)

B(k)

)
, (34)

8
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which follows from P+ + P− = 1l and S(1) = (eiδ+P+ + eiδ−P−)σ1. This eigenvalue equation
indicates that the positive energy spectrum and eigenfunctions of single particle quantum
mechanics on S1\{0} is completely determined by the one-particle S-matrix on R\{0}.

In the following, we will analyze the eigenvalue equation (34) in detail.

4.1. Spectrum quantization conditions

Let us first study the spectral property of S1\{0}. For non-vanishing A(k) and B(k), we have
to implement the following condition:

det[S(1)(k) − e−ikL1l] = 0, k > 0, (35)

which has two branches

e−ikL = s+(k) and e−ikL = s−(k), (36)

where s±(k) are given in (23a). It should be pointed out that these types of equations
are commonly referred to as the Bethe ansatz equations. Indeed, the generalization to the
n-particle system has been studied in the literature [11] under the name of impurity Bethe
ansatz equation.

The positive energy spectrum is determined as the positive roots of the equations

f±(k) = 0, (37)

where

f±(k) := kL +
1

i
log s±(k). (38)

It should be emphasized that we thought the logarithm function to be the multivalued function
defined as log z = {ln|z| + i Arg z + i2mπ | 0 � Arg z < 2π,m ∈ Z}, where Arg z is the
principal value of the argument. Each integer m determines the branch of the logarithm
function and m = 0 corresponds to the principal branch.

Note that if limk→0 s±(k) = 1, equation (37) may have zero energy solutions. However,
the existence of such a zero energy solution does not necessarily imply a physical state in the
spectrum because the k = 0 solution in (31) becomes trivial and should be thrown away if
A(0) + B(0) = 0, even though both A(0) and B(0) are not identically zero. Nevertheless, it
turns out that such a fake solution is necessary in the trace formulae discussed in the following
subsection and the proof of (3).

4.2. Trace formulae

In order to fulfill the gap between the operator formalism and the path-integral formalism, we
have to establish the trace formulae for S1\{0}. To this end, let us consider delta functions
δ(f±(k)). Since the values assumed by f±(k) are kL + Arg[s±(k)] + 2mπ for all integers m,
the delta functions δ(f±(k)) are periodic functions of f± with a period 2π so that it can be
expanded into the Fourier series

δ(f±(k)) = 1

2π

∑
n∈Z

einf±(k). (39)

Note that the left-hand side can be written as
∑

k±
m∈σ±

(
1
/∣∣f ′

±
(
k±
m

)∣∣) δ
(
k − k±

m

)
, where σ± are

the sets of both positive and negative roots of the equations f±(k) = 0 defined as

σ± := {
k±
m ∈ R | f±

(
k±
m

) = 0, · · · < k±
−2 < k±

−1 < k±
0 = 0 < k±

1 < k±
2 < · · ·}. (40)

Equation (40) requires more detailed explanations.
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• The negative roots (m < 0) are related to the positive ones as follows:

k±
−m =

{−k±
m for α± �= 0 or α± = 0,

−k∓
m for α+ = 0, α− �= 0 or α+ �= 0, α− = 0,

(41)

which follow from (26) and (36). These relations will be used in the proof of (3).
• The k±

0 = 0 roots appear only in the following four cases:

k+
0 for α± �= 0, (42a)

k±
0 for α+ = 0, α− �= 0, ex = 1, (42b)

k±
0 for α+ �= 0, α− = 0, ex = −1, (42c)

k−
0 for α± = 0. (42d)

It turns out that the solution of k+
0 = 0 for α± �= 0 and one of the two k±

0 = 0 solutions
for α+ = 0, α− �= 0, ex = 1 or α+ �= −, α− = 0, ex = −1 are fake solutions with
A(0) + B(0) = 0, as explained in the previous subsection. It is emphasized that the
k±

0 = 0 solutions (if they exist) must be included in σ±, irrespective of a fake or genuine
zero mode.

We note that these remarks will be important for the proof of (3); however, they are not relevant
for the rest of this subsection.

Now, identity (39) becomes the following three-parameter family of the trace formulae:∑
k±
m∈σ±

1∣∣f ′±
(
k±
m

)∣∣δ(k − k±
m

) = 1

2π

∑
n∈Z

einf±(k). (43)

Note that the derivatives of f±(k) are given as follows:

f ′
±(k) = L +

δ′
+(k) + δ′

−(k)

2
± δ′

+(k) − δ′
−(k)

2

−ex cos 	−(k)√
1 − e2

x sin2 	−(k)
(44)

and satisfy

f ′
±(−k) =

{
f ′

±(k) for α± �= 0 or α± = 0,

f ′
∓(k) for α+ = 0, α− �= 0 or α+ �= 0, α− = 0.

(45)

As we will see in section 4.4, f ′
±
(
k±
m

)
give the normalization factors for the positive energy

eigenfunctions.
Before closing this subsection, we try to rewrite formulae (43) in a more practically

convenient expression. Since
∑

k±
m∈σ±

(
1
/∣∣f ′

±
(
k±
m

)∣∣) δ
(
k − k±

m

) = (1/|f ′
±(k)|)∑

k±
m∈σ± δ

(
k −

k±
m

)
, (43) can be rewritten into the form

∑
k±
m∈σ± δ

(
k − k±

m

) = (1/2π)|f ′
±(k)| ∑n∈Z

einf±(k).
Thus, by multiplying a smooth test function F(k) and integrating out over the range
−∞ < k < ∞, the trace formulae (43) can be cast into the following form:∑

k±
m∈σ±

F
(
k±
m

) =
∑
n∈Z

∫ ∞

−∞

dk

2π

∣∣∣∣df±(k)

dk

∣∣∣∣F(k) einf±(k). (46)

This identity will be useful for computations of the Casimir energy or the perturbative loop
calculations of Feynman diagrams in quantum field theory with nontrivial extended defects
(branes or boundaries).

We should make a comment here. Formula (46) reduces to the Poisson summation formula
when df±(k)/dk = const, which can be realized for a certain region of the parameter space
spanned by α+, α− and ex . Then the infinite sequence of the solutions k±

m in (46) becomes

10
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equidistant, i.e. k±
m = (2πm + θ)/L for 0 � θ < 2π . In the U(2) parameter family, however,

df±(k)/dk can, in general, depend on k and the solutions k±
m will be given by transcendental

roots with no analytic expression. It should be emphasized that even in this case, formula (46)
can be used to derive the Feynman kernel (3).

4.3. Reconstruction of the S-matrix

Once given the two eigenvalues s±(k) and the corresponding complete orthonormal
eigenvectors |±〉 := t (A±(k), B±(k)) satisfying 〈±|±〉 = 1, 〈±|∓〉 = 0 and |+〉〈+|+|−〉〈−| =
1l, the one-particle S-matrix can be reconstructed in terms of A±(k) and B±(k) from the
projection operators

P±(k) = |±〉〈±| =
( |A±(k)|2 A±(k)[B±(k)]∗

[A±(k)]∗B±(k) |B±(k)|2
)

, (47)

which of course satisfy P+(k) + P−(k) = 1l, [P±(k)]2 = P±(k) and P±(k)P∓(k) = 0. It
follows from the orthonormality and completeness that

|A+(k)|2 + |A−(k)|2 = 1, (48a)

|B+(k)|2 + |B−(k)|2 = 1, (48b)

A+(k)[B+(k)]∗ + A−(k)[B−(k)]∗ = 0, (48c)

[A+(k)]∗B+(k) + [A−(k)]∗B−(k) = 0. (48d)

By comparing (47) to (24), we find the following relations:

|B±(−k)|2 =
{|A±(k)|2 for α± �= 0 or α± = 0,

|A∓(k)|2 for α+ = 0, α− �= 0 or α+ �= 0, α− = 0,
(49a)

A±(−k)[B±(−k)]∗ =
{

[A±(k)]∗B±(k) for α± �= 0 or α± = 0,

[A∓(k)]∗B∓(k) for α+ = 0, α− �= 0 or α+ �= 0, α− = 0.

(49b)

Each component of the n-times scattering matrix S(n)(k) in (26) is found to be

S(n)
++ (k) =

∑
ξ=±

[sξ (k)]n|Aξ(k)|2, (50a)

S
(n)
−−(k) =

∑
ξ=±

[sξ (k)]n|Bξ(k)|2, (50b)

S
(n)
−+(k) =

∑
ξ=±

[sξ (k)]n[Aξ(k)]∗Bξ(k), (50c)

S
(n)
+−(k) =

∑
ξ=±

[sξ (k)]nAξ (k)[Bξ(k)]∗. (50d)

4.4. Eigenfunctions

In terms of the orthonormal eigenvectors |±〉 = t (A±(k), B±(k)), the energy eigenfunctions
(31) are rewritten as follows:

ψ±
m (x) = N±

m

[
A±(

k±
m

)
eik±

mx + B±(
k±
m

)
eik±

m(L−x)
]
, (51)

11
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where the normalization factors N±
m are given by

∣∣N±
m

∣∣2 =
(

L +
{
A±(

k±
m

)[
B±(

k±
m

)]∗
+ B±(

k±
m

)[
A±(

k±
m

)]∗}eik±
mL − e−ik±

mL

2ik±
m

)−1

. (52)

With the help of the identities A±(
k±
m

)[
B±(

k±
m

)]∗
+ B±(

k±
m

)[
A±(

k±
m

)]∗ = tr
[
P±

(
k±
m

)
σ1

] =
±εx

(
k±
m

)
, eik±

mL − e−ik±
mL = −2i Im

[
s±

(
k±
m

)]
and (18), it is not difficult to show that the

normalization factors can be written as∣∣N±
m

∣∣2 = 1

f ′±
(
k±
m

) . (53)

5. Feynman kernel

In this section, we prove our main goal of formula (3). To this end, let us first discuss the case
of 0 < α± < 2π . In the operator formalism, the Feynman kernel is then given by

K(x, T ; x0, 0) =
∑
ξ=±

∞∑
m=1

e−i(kξ
m)2T ψξ

m(x)
[
ψξ

m(x0)
]∗

+ (bound state contribution). (54)

We note that a fake k+
0 = 0 mode is not included in the above summation, as it should

be. Substituting (51) into (54) and using relations (41), (45), (49a), (49b) and (53) for
0 < α± < 2π , we can rewrite (54) as

K(x, T ; x0, 0) =
∑
ξ=±

∑
k

ξ
m∈σξ

e−i(kξ
m)2T 1

f ′
ξ

(
k

ξ
m

)
×{∣∣Aξ

(
kξ
m

)∣∣2
eikξ

m(x−x0) +
[
Aξ

(
kξ
m

)]∗
Bξ

(
kξ
m

)
eikξ

m(L−x−x0)
}

+ (bound state contribution). (55)

We should note that the summations over k±
m can be enlarged to σ± and a fake k+

0 = 0 mode is
added in (55) with the relation A+

(
k+

0

)
+ B+

(
k+

0

) = 0. Now we can use the trace formula (46):

K(x, T ; x0, 0) =
∑
ξ=±

∑
n∈Z

∫ ∞

−∞

dp

2π
[sξ (p)]n

× {|Aξ(p)|2 eiT [p(
nL+x−x0

T
)−p2] + [Aξ(p)]∗Bξ(p) eiT [p(

(n+1)L−x−x0
T

)−p2]
}

+ (bound state contribution), (56)

where definitions (38) have been used. By use of relations (26), (48a), (49a), (49b),
(50a)–(50d), we finally arrive at conclusion (3).

It is interesting to point out that the final expression (3) holds for other values of α±, even
though relations (41), (45), (49a) and (49b) and the existence/nonexistence of a fake zero
mode, as well as physical zero energy states, depend on α±. Furthermore, we emphasize that
the knowledge of the energy eigenvalues and eigenstates is required in the expression of the
Feynman kernel (54), while only the one-particle scattering matrix is sufficient to represent
the Feynman kernel in our formulation. This suggests that expression (3) is more fundamental
than the original one (54).

Before closing this section, we would like to briefly summarize the previous results.
For the smooth subfamily of point interactions [6, 7], the boundary conditions are given
by ψ(L) = eiθψ(0) and ψ ′(L) = eiθψ ′(0) (0 � θ < 2π), which corresponds to ez = 0
and (α+, α−) = (0, π) or (π, 0), and the form of the Feynman kernel is well known [8, 9].
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In the separated subfamily of point interactions [6, 7], the Neumann–Neumann, Dirichlet–
Dirichlet, Neumann–Dirichlet, Dirichlet–Neumann boundary conditions at x = 0 and L,
which correspond to (α+, α−) = (0, 0), (π, π), (0, π), (π, 0) with ex = ey = 0, are vastly
studied in the literature. For the scale-independent subfamily of point interactions [6, 7],
the boundary conditions are given by ψ(L) = eρ+iθψ(0) and ψ ′(L) = e−ρ+iθψ ′(0), which
correspond to (α+, α−) = (0, π) or (π, 0) and arbitrary 
e, and the kernel was obtained in
[6, 7]. It is not difficult to verify that all of the results mentioned above coincide with
our formula (3), although the exact forms of the kernels have been found so far only for a
very limited class in the whole U(2) parameter family. In fact, all the systems mentioned
above have the common properties that make the analysis much easier: the infinite sequence
of the momentum eigenvalues k±

m is equidistant and the normalization factors N±
m of the

wavefunctions in (51) are independent of k±
m , which implies that df±

(
k±
m

)/
dk are constant

(see equation (53)) and hence formula (46) reduces to the Poisson summation formula. Our
formula (3) holds true even when k±

m are given by transcendental roots and hence have no
analytic expressions in the whole U(2) parameter family. Thus, our results turn out to include
the non-trivial extension of the previous works.

6. Conclusions

In this paper, we studied the particle propagation on a circle in the presence of a single point
interaction compatible with the conservation of the probability current or the self-adjoint
extension of the Laplace operator −d2/dx2 on S1\{0}. We uncovered the classical trajectories
for a quantum particle on S1\{0}, which consist of 2n distinct paths for a particle scattered
n-times from the point interaction (point scatterer). We also illuminated a deep connection
between the scattering theory on R\{0} and the spectral property of S1\{0}, which, in roughly
speaking, is summarized as the following correspondences:

eigenvalues of the S-matrix on R\{0} ⇔ energy spectrum of S1\{0},
eigenvectors of the S-matrix on R\{0} ⇔ energy eigenfunctions on S1\{0}.
These correspondences may be regarded as some kind of an inverse scattering method [13]
for singular zero-range potential in one spatial dimension. Indeed, once given an S-matrix on
R\{0} (‘scattering data’ on R), we can construct the (positive) energy eigenfunctions as well
as the (positive) energy spectrum on S1\{0} via these correspondences.

We note that the eigenvalues of the S-matrix depend only on the three parameters α+, α−
and ex , whereas the eigenvectors depend on the full parameters of U(2). The reason can be
explained from the above correspondence because the energy spectrum of S1\{0} depends
only on the three parameters due to a U(1) symmetry with respect to the parity in the spectral
space [7].

The main success of this work is the systematic description of a one-particle Feynman
kernel on a circle with a point interaction. The point is that we do not need any knowledge
of the spectrum nor of the complete set of energy eigenfunctions of the system (except for
the bound states). What we have to know is the classical trajectories of a particle and the
one-particle scattering matrix.
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